
Online Appendix for “A welfare analysis of tax struc-
tures with love-of-variety preferences”

A Specific Taxation and Ad Valorem and Results

Proof. Marginal Excess Burden Formula for specific tax dW
dt
.

Let the total welfare to be the sum of consumer surplus, profits and government tax

revenues.

W (p(t), t, J(t)) = u(QL(t), J(t))− (p(t) + t)Q︸ ︷︷ ︸
CS

+ p(t)QL(t)− Jc
(
QL(t)
J(t)

)
− J(t)F︸ ︷︷ ︸

Jπ

+ tQL(t)︸ ︷︷ ︸
R

By totally differentiating WL(t) = W (p(t), t, J(t)) we obtain

dWL

dt
=
(
∂u

∂Q
(Q0, J0)− c′(q0)

)
dQL

dt
+
(
∂u

∂J
(Q0, J0)− c(q0)− F + q0c

′(q0)
)
dJ

dt

= (p0 + θt0 − c′(q0)) dQL

dt
+ (Λ0 + π0 − [p0 − c′(q0)] ∗ q0) dJ

dt
(1)

where we used the first-order approximation from Chetty, Looney and Kroft (2009) ∂u
∂J

(Q0, J0) =

p0 + θtt0, we used our definition of variety effect Λ0 = ∂u
∂J

(Q0, J0) and profits π0 = p0q0 −

c(q0) − F . When t0 = 0, p0 = c′(q∗) and Λ0 = −π0, we get dWL

dt
= 0 which is the first-best

outcome.

Proof. Lemma 1.

Let π = pq − c(q) = 0 be the free-entry condition of firms. Then dπ
dt

= 0 implies that(p−

mc)dq
dt

= −q dp
dt

and so p−mc
p

= − q/t
p/t

dp
dt
dq
dt

.

Proof. Proposition 1 in general case without Assumption 3.

Let ∆ =
[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
−

εDJ

(
∂P
∂J

+ ∂2P
∂J∂Q

qνq

)
(p(1+τ)+t)

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
.1 The firm stability

1This becomes ∆ =
[
2− νq

J + ε∗
D− νq

J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
1 + ε∗

D− νq
J

εS
νq
J

+ 1
εms

)
under Assumption 3 of

parallel demands.
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conditions ∂2πj
∂p2
j
< 0 and ∂πj

∂J
< 0, are respectively equivalent to 1+ ε∗D−

νq
J

εS
+

νq
J

εms
> 0 and ∆ > 0,

where ε∗D = p(1+θτ τ)
p(1+τ)+tεD. Here, ∆ and ε∗D are written in the general form that depends on both

the specific tax rate t and the ad valorem tax rate τ for convenience, however from Proposition

1 we set τ = 0.

By Lemma 1, we have dPS
dt

= 0. Therefore substituting this into equation (1) we obtain:

dW

dt
= Λ0

dJ

dt
−Q0

dp

dt
+ θtt0

dQL

dt

From the behavioral equation of consumers wtp(Q) = p+ θtt, we have

mwtp(Q, J)dQ
dt

+ Λ
Q

dJ

dt
= dp

dt
+ θt (2)

In addition, from the free-entry condition, (p−mc)dq
dt

= −q dp
dt
, and firm’s first-order condition,

p−mc = ms(Q)νq
J
, we have

mwtp(Q, J)νq
dq

dt
= dp

dt
(3)

Combining this with the behavioral equation above, and letting mwtp(Q, J) = mwtp(Q) for

simplicity, we have

mwtp(Q)νq
dq

dt
= mwtp(Q)dQ

dt
+ Λ
Q

dJ

dt
− θt

= mwtp(Q)
(
J
dq

dt
+ q

dJ

dt

)
+ Λ
Q

dJ

dt
− θt (4)

where the second line follows from substituting dQ
dt

= J dq
dt

+ q dJ
dt
. Therefore,

dq

dt
=
θt −

(
Λ
Q

+ q ∗mwtp(Q)
)
dJ
dt

mwtp(Q)(J − νq)
(5)
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Using now dq
dt

= ∂q
∂t

+ ∂q
∂J

dJ
dt

(note that ∂q
∂t

= dq
dt

∣∣∣
J
) we can get

dJ

dt
=

θt − (J − νq)mwtp(Q)∂q
∂t

Λ
Q

+ q ∗mwtp(Q) + (J − νq)mwtp(Q) ∂q
∂J

(6)

From Kroft et al. (2020), we have

∂q

∂t
= dq

dt

∣∣∣∣∣
J

= 1
Jmwtp(Q)

(
ρSRt + θt − 1

)
= ωSRt θt
Jmwtp(Q) (7)

where ρSRt = 1 − (1− ωSR) θt and ωSR = 1

1+
ε∗
D

−
νq
J

εS
+

νq
J
εms

, where ε∗D = p(1+θτ τ)
p(1+τ)+tεD (short-run

passthrough is taken from Kroft et al. (2020), for section 3 τ = 0, while for section 4 t = 0,

however ωSR and ε∗D can be written in this general form for convenience).

Finally, fix t, and differentiate the first-order confition with respect to J to get:

Λ
Q

+mwtp(Q)
(
q + J

∂q

∂J

)
−c′′(q) ∂q

∂J
= − ∂q

∂J
mwtp(Q)νJ−qνJmwtp′(Q)

(
q + J

∂q

∂J

)
− ∂2P

∂J∂Q
qνq

where we have assumed that ∂ν
∂J

= 0. Further simplifying yields:

∂q

∂J
= −

∂P
∂J

+ ∂2P
∂J∂Q

qνq +mwtp(Q)q + q2νqmwtp
′(Q)

(J + νq)mwtp(Q)− c′′(q) + Jqνqmwtp′(Q) (8)

Rearranging equation (8), the denominator is equal to J ∗mwtp(Q)∗
(

1 + ε∗D−
νq
J

εS
+

νq
J

εms

)
, and

so we get:

∂q

∂J
= − ωSR

J ∗mwtp(Q)

(
∂P

∂J
+ ∂2P

∂J∂Q
qνq

)
− q

J
ωSR

(
1− νq

J
+

νq
J

εms

)
(9)

Note:

ωSR
νq
J

∆ =
(
∂P

∂J
+ ∂2P

∂J∂Q
qνq

)(
1− ωSR

(
1− νq

J

))

+ q ∗mwtp(Q)
(

1− ωSR
(

1− νq
J

)(
1− νq

J
+

νq
J

εms

))
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Substituting equation (9) and equation (7) into equation (6), we get:

dJ

dt
= θt

1− ωSR
(
1− νq

J

)
ωSR

νq
J

∆



, and substituting dJ
dt

into equation (5), we obtain:

dq

dt
= θtq

J

 νq
J
−

νq
J

εms
νq
J

∆



Finally, from equation (3) and the expression for dq
dt

we have:

ρt = 1 +mwtp(Q, J)νq
dq

dt

=
νq
J

[
2 + ε∗D−

νq
J

εS
νq
J

+ (1− θt)
(
νq
J
−

νq
J

εms

)]
− εDJ

p+t

(
∂P
∂J

+ ∂2P
∂J∂Q

qνq
) [

νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

]
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− εDJ

p+t

(
∂P
∂J

+ ∂2P
∂J∂Q

qνq
) [

νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

]

When we impose Assumption 3 (parallel demands). we obtain that ∂P
∂J

(Q, J) = Λ
Q

and
∂2P
∂J∂Q

= 0. Therefore, equation (9) is translated to

∂q

∂J
= − ωSRΛ

JQ ∗mwtp(Q) −
q

J
ωSR

(
1− νq

J
+

νq
J

εms

)
(10)

And following the same steps we obtain:

dq

dt
= −θtqεD

p+ t


νq
J
−

νq
J

εms

νq
J

(
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

)
− ΛεD

(p+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)
 (11)

dJ

dt
= −θtJεD

p+ t


νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

νq
J

(
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

)
− ΛεD

(p+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)
 (12)
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ρt =
νq
J

[
2 + ε∗D−

νq
J

εS
νq
J

− (1− θt)
(
νq
J
−

νq
J

εms

)]
− ΛεD

(p+t)q

[
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

]
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p+t)q

[
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

] (13)

Proof. Corollary 1.

The proof is immediate by setting θt = 1, Λ0 = 0 and t0 = 0 into the conditions of

Proposition 1.

Proof. Corollary 2.

First, the overshifting condition is given by:

dp

dt
≥ 0

⇔ mwtp(Q, J)νq
dq

dt
≤ 0

⇔
νq
J
−

νq
J

εms

νq
J

(
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

)
− ΛεD

(p+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

) ≥ 0

⇔ 1− 1
εms
≥ 0

where we have used that ∆ ≥ 0 by stability.

Next, note that the second-order conditions imply

Λ
Q

(
1− ωSR

(
1− νq

J

))
+ q ∗mwtp(Q)

(
1− ωSR

(
1− νq

J

)(
1− νq

J
+

νq
J

εms

))
< 0

and 1 + ε∗D−
νq
J

εS
+

νq
J

εms
> 0. Thus,

sign

(
dJ

dt

)
= −sign

(
νq
J

+
ε∗D −

νq
J

εS
+

νq
J

εms

)

and

sign

(
dq

dt

)
= sign

( 1
εms
− 1

)
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It follows that

dW

dt
≥ 0⇔ dq

dt
≥ ΛεD

νqp

dJ

dt

⇔ 1− 1
εms
≤ ΛεD
qp
(
νq
J

)2

[
νq
J

+
ε∗D −

νq
J

εS
+

νq
J

εms

]

Proof. Lemma 2.

From the behavioral equation wtp(Q) = P (Q, J) = p + θt, we can express price as a

function of J and t. Then we have

p(J, t) = P (Q(J, t), J)− θt

Therefore,

∂p

∂J
= ∂P

∂J
+mwtp(Q, J)∂Q

∂J

= Λ
Q

+ q ∗mwtp(Q, J) +mwtp(Q, J) ∗ J ∗ ∂q
∂J

=
[

Λ
Q
− p+ t

JεD

(
1 + J

q

∂q

∂J

)]

From the proof of Proposition 1, we also have that:

∂q

∂J
= −

Λ
Q

+mwtp(Q)q + q2νqmwtp
′(Q)

(J + νq)mwtp(Q)− c′′(q) + Jqνqmwtp′(Q)

= − ωSRΛ
JQ ∗mwtp(Q) −

q

J
ωSR

(
1− νq

J
+

νq
J

εms

)
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Therefore,

∂p

∂J
=
[

Λ
Q
− p+ t

JεD

(
1 + J

q

∂q

∂J

)]
J

q

∂q

∂J
= −ωSR

[
1− νq

J

(
1− 1

εms

)
− ΛεD

(p+ t)q

]

Proof. Corollary 3.

Observe that

∂π

∂t
= ∂p

∂t
q + (p−mc) ∂q

∂t

= ∂p

∂t
q + νq

Jε∗D

∂q

∂t
p

=
(
ρSRt − 1

)
q + νq

Jε∗D
p
ρSRt − 1 + θt
Jmwtp(Q)

= qθtωSR

(
1− νq

J
− 1
ωSRt

)

= −qθtωSR
(
νq
J

+
ε∗D −

νq
J

εS
+

νq
J

εms

)

where the term in parenthesis is the numerator in equation (12). This implies that given the

denominator is positive by stability, then:

sign

(
∂π

∂t

)
= sign

(
dJ

dt

)

From the behavioral equation wtp(Q) = P (Q, J) = p+ θt, we can express price as a function

of J and t. Then we have

p(J, t) = P (Q(J, t), J)− θt
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Therefore, using Lemma 2 for the second line we obtain:

dp

dt
= ∂p

∂J

dJ

dt
+ ∂p

∂t

=
(

Λ
Q

+mwtp(Q, J)∂Q
∂J

)
dJ

dt
+ (ρSR − 1)

which implies that

ρt − ρSRt = ∂p

∂J

dJ

dt

Then we can express the difference between long-run and short-trun pass-through as:

ρt − ρSRt =
(

Λ
Q
− ωSRΛ

Q
+ q ∗mwtp(Q, J)− q ∗mwtp(Q, J) ∗ ωSR

(
1− νq

J
+

νq
J

εms

))
dJ

dt

=
(

(1− ωSR) Λ
Q

+ p+ t

JεD
∗
(
ωSR

(
1− νq

J
+

νq
J

εms

)
− 1

))
dJ

dt

=
(

(1− ωSR) Λ
Q
− p+ t

JεD
∗ ωSR ∗

(
νq
J

+
ε∗D −

νq
J

εS

))
dJ

dt

=
(

(1− ωSR) Λ
Q
− p+ t

JεD
∗ ωSR ∗

(
1− ωSR

(
1− νq

J
+

νq
J

εms

)))
dJ

dt

= 1
1 + ε∗D−

νq
J

εS
+

νq
J

εms

((
ε∗D −

νq
J

εS
+

νq
J

εms

)
Λ
Q
− p+ t

JεD
∗
(
νq
J

+
ε∗D −

νq
J

εS

))
dJ

dt

Therefore,

sign
(
ρt − ρSRt

)
= −sign

((
ε∗D −

νq
J

εS
+

νq
J

εms

)
Λ
Q
− p+ t

JεD
∗
(
νq
J

+
ε∗D −

νq
J

εS

))
∗ sign

(
dJ

dt

)

Finally, under the conditions of Corollary 3, we can sign part of the following expression

as follows:
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ρt − ρSRt = 1
1 + ε∗D−

νq
J

εS
+

νq
J

εms

((
ε∗D −

νq
J

εS
+

νq
J

εms

)
Λ
Q
− p+ t

JεD
∗
(
νq
J

+
ε∗D −

νq
J

εS

))
dJ

dt

= 1
1 +

νq
J

εms

(( νq
J

εms

)
Λ
Q
− p+ t

JεD
∗
(
νq
J

))
︸ ︷︷ ︸

<0

dJ

dt

which implies

sign
(
ρt − ρSRt

)
= −sign

(
∂π

∂t

)

Proof. Lemma 3.

Let π = pq−c(q) = 0 by the free-entry condition. Then dπ
dτ

= 0 implies (p−mc) dq
dτ

= −q dp
dτ

and so p−mc
p

= − q/τ
p/τ

dp
dτ
dq
dτ

.

Proof. Proposition 2 with Assumption 3.

We will provide a proof of Proposition 2 under parallel demands and then discuss at

the end how the formulas change without parallel demands. Note that for marginal excess

burden, we do not require Assumption 3.

Consider a change in the tax from τ0 to τ1. A first-order approximation to the marginal

excess burden of taxation is:

dW

dτ
= (p0(1 + θττ0)− c′(q0))dQL

dτ︸ ︷︷ ︸
Quantity effect

+ (Λ0 + π0 − [p0 − c′(q0)] ∗ q0)dJ
dτ︸ ︷︷ ︸

Diversity effect

(14)

Under Lemma 3, the marginal excess burden of taxation is given by:

dW

dτ
= Λ0

dJ

dτ
−Q0

dp

dτ
+ θττ0p0

dQL

dτ
(15)
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Willingness-to-pay with ad valorem taxes takes the form wtp(Q) = p(1+θττ), somwtp(Q)dQ
dτ

+
∂P
∂J

dJ
dτ

= dp
dτ

(1 + θττ) + pθτ . With the parallel demands assumption, we have ∂P
∂J

= Λ
Q
. We

also have the free entry-condition (p − mc) dq
dτ

= −q dp
dτ
, and the firm’s first-order condition

p−mc = − νq
J(1+θτ τ)mwtp(Q)Q. Therefore, we have:

νq ∗mwtp(Q)dq
dτ

= (1 + θττ) dp
dτ

(16)

which implies:
dq

dτ
=
pθτ −

(
Λ
Q

+ q ∗mwtp(Q)
)
dJ
dτ

mwtp(Q)
(
1− νq

J

) (17)

Using now dq
dτ

= ∂q
∂τ

+ ∂q
∂J

dJ
dτ

(Here ∂q
∂τ

= dq
dτ

∣∣∣
J
). we get

dJ

dτ
=

pθτ +
(
νq − J

)
mwtp(Q) ∂q

∂τ

Λ
Q

+ q ∗mwtp(Q) +
(
J − νq

)
∂q
∂J

(18)

We also have
∂q

∂τ
= dq

dτ

∣∣∣∣∣
J

= 1
Jmwtp(Q) (θτmc ∗ ωSR)

where ρSRτ = 1−
(
1− ωSRmcp

)
θτ and ωSR = 1

1+
ε∗
D

−
νq
J

εS
+

νq
J
εms

. Moreover,

∂q

∂J
= −Λ

Q

ωSR
J ∗mwtp(Q) −

qωSR
J

(
1− νq

J
+

νq
J

εms

)
(19)
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Therefore, substituting ∂q
∂τ

and ∂q
∂J

into equation (18)we have

dJ

dτ
= θτ

 p−mc ∗ ωSR
(
1− νq

J

)
Λ
Q

(
1− ωSR

(
1− νq

J

))
+ q ∗mwtp(Q)

(
1− ωSR

(
1− νq

J

)(
1− νq

J
+

νq
J

εms

))


= pθτ


(

1 + ε∗D−
νq
J

εS
+

νq
J

εms

)
−
(

1−
νq
J

ε∗D

) (
1− νq

J

)
Λ
Q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)
+ q ∗mwtp(Q)

(
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

])


= −θτJεD1 + τ


νq
J

(
1 + 1

ε∗D
−

νq
J

ε∗D
+ ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(1+τ)pq

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)
 (20)

Recall ∆ =
[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
. Substituting equation

(20) into equation (17), then:

dq

dτ
= −θτωSR
Jmwtp(Q)


Λ
Q

(p−mc) + q ∗mwtp(Q)
(
p
(

1− νq
J

+
νq
J

εms

)
−mc

)
ωSR

νq
J

∆



= −pθτ
Jmwtp(Q)


νq
J

ε∗D
− νq

J
+

νq
J

εms
− ΛεD

(1+τ)pq

νq
J

ε∗D
νq
J

∆



Finally,

ρτ = 1
p

1 + τ

1 + θττ
νqmwtp(Q)dq

dτ
+ 1

= −νq
J

θτ (1 + τ)
(1 + θττ)


Λ
Q

(
p−mc
p

)
+ q ∗mwtp(Q)

(
p−mc
p
− νq

J
+

νq
J

εms

)
νq
J

∆

+ 1

=
νq
J

∆− νq
J
θτ (1+τ)
(1+θτ τ)

(
p−mc
p
− νq

J
+

νq
J

εms

)
+ ΛεD

(1+τ)pq

(
νq
J
θτ (1+τ)
(1+θτ τ)

p−mc
p

)
νq
J

∆

Using p−mc
p

=
νq
J

ε∗D
, we obtain:

ρτ =
∆− νq

J
θτ (1+τ)
(1+θτ τ)

(
1
ε∗D
− 1 + 1

εms

)
+ ΛεD

(1+τ)pq

(
νq
J
θτ (1+τ)
(1+θτ τ)

1
ε∗D

)
∆
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In the case where Assumption 3 does not hold, analogous results can be derived by

substituting Λ
q
with J(∂P

∂J
+ ∂2P
∂J∂Q

qνq). The proof is completely analogous to that of Proposition

1 without Assumption 3.

Proof. Corollary 4.

This follows immediately by setting θ = 1, Λ0 = 0 and τ0 = 0 into the conditions of

Proposition 2.

Proof. Corollary 5.

Assume that νq ∈ (0, J ], θτ ∈ [0, 1], and that π0 = 0. We derive each of the results stated

in the Corollary:

1. Overshifting: a small tax increases producer prices if and only if:

dp

dτ
≥ 0

⇔ ρτ ≥ 1

⇔ −νq
J

θτ (1 + τ)
(1 + θττ)

( νq
J

ε∗D
− νq
J

+
νq
J

εms

)
+ ΛεD

(1 + θττ)pq

(
νq
J

θτ (1 + τ)
(1 + θττ)

νq
J

εD

)
≥ 0

⇔ − 1
ε∗D

+ 1− 1
εms
≥ − ΛεD

(1 + θττ)pq
1
εD

⇔ 1− 1
εms
≥ 1
ε∗D
− Λ0

p0q0(1 + θττ0)

2. Starting from no tax τ0 = 0, introducing a small specific tax, increases welfare if and

only if:

dW

dτ
= Λ0

dJ

dτ
−Q0

dp

dτ
≥ 0⇔ Λ0

p0Q0

dJ

dτ
≥ ρτ − 1

⇔ 1
ε∗D

+ 1
εms
− 1 ≥ Λ0εD

p0q0
νq
J0

[
1 + 1

ε∗D
+ 1
εms

+
ε∗D −

νq
J0

εS
νq
J0

]

3. Therefore, if Λ0 = 0, starting from no tax τ0 = 0, introducing a small tax, increases
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welfare if and only if there is no overshifting:

dW

dτ
≥ 0⇔ dp

dτ
≤ 0⇔ 1

ε∗D
+ 1
εms
− 1 ≥ 0

Proof. Lemma 4.

The proof is analogous to Lemma 2. The only modification is that the behavioral equation

for ad valorem taxation p(J, t) = P (Q(J,t),J)
1+θτ τ implies a rescaling is needed for ∂p

∂J
.

Proof. Corollary 6.

Note that:

∂π

∂τ
= ∂p

∂τ
q + (p−mc) ∂q

∂τ

= ∂p

∂τ
q − νq

J

Qmwtp(Q)
1 + θττ

∂q

∂τ
p

=
(
ρSRτ − 1

)
pq − νq

J

Qmwtp(Q)
1 + θττ

∂p
∂t

(1 + θττ) + pθτ
Jmwtp(Q)

=
(
ρSRτ − 1

)
pq − νq

J

pq

1 + θττ

((
ρSRτ − 1

)
(1 + θττ) + θτ

)
= pq

[(
ρSRτ − 1

)(
1− νq

J

)
− νq
J

(
θτ

1 + θττ

)]

= pqθτ

[(
mc

p
ωSR − 1

)(
1− νq

J

)
− νq
J

( 1
1 + θττ

)]

= −pqθτωSR
[(

1 +
ε∗D −

νq
J

εS
+

νq
J

εms

)
−
(

1−
νq
J

ε∗D

)(
1− νq

J

)
+ νq
J

(
θττ

1 + θττ

)]

= −pqθτωSR
(
νq
J

(
1 +

1− νq
J

ε∗D
+
ε∗D −

νq
J

εS
νq
J

+ 1
εms

)
+ νq
J

(
θττ

1 + θττ

))

and

dJ

dτ
= −θτJεD1 + τ


νq
J

(
1 + 1

ε∗D
−

νq
J

ε∗D
+ ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(1+τ)pq

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)


which implies

sign

(
∂π

∂τ

)
= sign

(
dJ

dτ

)
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Finally, we also have

dp

dτ
= ∂p

∂J

dJ

dt
+ ∂p

∂t

= 1
1 + θττ

(
∂P

∂J
+mwtp(Q, J)∂Q

∂J

)
dJ

dτ
+ 1

1 + θττ

(
mwtp(Q, J)∂Q

∂τ
− θτp

)

= 1
1 + θττ

(
Λ
Q

+mwtp(Q, J)∂Q
∂J

)
dJ

dτ
+
(
∂p

∂τ

)

which implies

ρτLR − ρτSR = 1 + τ

1 + θττ

(
Λ
Q

+ q ∗mwtp(Q, J) +mwtp(Q, J) ∗ J ∗ ∂q
∂J

)
1
p

dJ

dτ

and so

ρτ − ρSRτ =
1+τ

1+θτ τ

1 + ε∗D−
νq
J

εS
+

νq
J

εms

((
ε∗D −

νq
J

εS
+

νq
J

εms

)
Λ
Q
− p(1 + τ)

JεD
∗
(
νq
J

+
ε∗D −

νq
J

εS

))
dJ

dτ

=
1+τ

1+θτ τ

1 +
νq
J

εms

(( νq
J

εms

)
Λ
Q
− p+ t

JεD
∗
(
νq
J

))
︸ ︷︷ ︸

<0

dJ

dτ

which implies that:

sign
(
ρτ − ρSRτ

)
= −sign

(
∂π

∂τ

)

B Comparison between Ad Valorem and Specific Tax-
ation

We begin by considering the reduced-form effects of taxes in order to compare ad valorem

to specific taxation. Throughout we will make use of the definitions εD = − p(1+τ)+t
Qmwtp(Q) .

ε∗D = p(1+θτ τ)
p(1+τ)+tεD, and ∆ =

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
> 0 for

the stability condition:
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ρt =
∆ + θt

νq
J

(
1− 1

εms

)
∆

ρτ =
∆ + νq

J
θτ (1+τ)
(1+θτ τ)

(
1− 1

εms
+ 1

ε∗D

(
ΛεD

(p(1+τ)+t)q − 1
))

∆
dq

dt
= − θtqεD

p(1 + τ) + t

(1− 1
εms

∆

)

dq

dτ
= − θτpqεD

p(1 + τ) + t

1− 1
εms
− 1

ε∗D
+ ΛεD

(p(1+τ)+t)q
1
ε∗D

∆


dJ

dt
= − θtJεD

p(1 + τ) + t

1 + ε∗D−
νq
J

εS
νq
J

+ 1
εms

∆


dJ

dτ
= − θτpJεD

p(1 + τ) + t

1 + 1
ε∗D
−

νq
J

ε∗D
+ ε∗D−

νq
J

εS
νq
J

+ 1
εms

∆


dQ

dt
= − θtQεD

p(1 + τ) + t

2 + ε∗D−
νq
J

εS
νq
J

∆


dQ

dτ
= − θτpQεD

p(1 + τ) + t

2 + ε∗D−
νq
J

εS
νq
J

+
(

ΛεD
(p(1+τ)+t)q −

νq
J

)
1
ε∗D

∆


dW

dt
= ΛdJ

dt
+ θtt

dQ

dt
−Qdp

dt
dW

dτ
= ΛdJ

dτ
+ θττp

dQ

dτ
−Qdp

dτ
dR

dt
= Q+ t

dQ

dt
dR

dτ
= pQ+ τp

dQ

dτ
+ τQ

dp

dτ
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Proof. Proposition 3. Rewrite ρτ as:

ρτ =
νq
J

[
2 + ε∗D−

νq
J

εS
νq
J

−
(
1− θτ (1+τ)

(1+θτ τ)

)(
νq
J
−

νq
J

εms

)]
νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)

−
ΛεD

(p(1+τ)+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)
+ θτ (1+τ)

(1+θτ τ)
( νqJ )2

ε∗D

[
ΛεD

(p(1+τ)+t)q − 1
]

νq
J

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms

)

Then, observe that for θt = θτ (1+τ)
(1+θτ τ) (for example if θt = θτ and τ = 0) then

ρτ − ρt =
θτ (1+τ)
(1+θτ τ)

( νqJ )2

ε∗D

[
ΛεD

(p(1+τ)+t)q − 1
]

νq
J

[
2− νq

J
+ εD−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

[
νq
J

+ εD−
νq
J

εS
+

νq
J

εms

]

so

ρτ > ρt ⇔
ΛεD

(p(1 + τ) + t)q > 1⇔ Λ
Q

+ q ∗mwtp(Q) > 0

We now consider the marginal cost of public funds (MCPF) starting from zero initial

taxes.

R = τpQ+ tQ

MCPFt = −
ΛdJ
dt

+ θtt
dQ
dt
−Qdp

dt

Q+ tdQ
dt

= −Λ
Q

dJ

dt
+ dp

dt

= −Λ
Q

dJ

dt
+ ρt − 1

MCPFτ = −
ΛdJ
dτ

+ θττp
dQ
dτ
−Q dp

dτ

pQ+ τpdQ
dτ

+ τQ dp
dτ

= − Λ
pQ

dJ

dτ
+ ρτ − 1
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Furthermore,
dJ

dt
= θt

Λ
Q

+ q ∗mwtp(Q)
+

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)
dp

dt

dJ

dτ
= pθτ

Λ
Q

+ q ∗mwtp(Q)
+ (1 + θττ)

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)
dp

dτ

and when taxes are zero, we get:

dJ

dt
= θt

Λ
Q

+ q ∗mwtp(Q)
+

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)
(ρt − 1)

dJ

dτ
= pθτ

Λ
Q

+ q ∗mwtp(Q)
+

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)
p(ρτ − 1)

and so

MCPFt = −Λ
Q

θt
Λ
Q

+ q ∗mwtp(Q)
+ (ρt − 1)

1− Λ
Q

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)


MCPFτ = −Λ

Q

θτ
Λ
Q

+ q ∗mwtp(Q)
+ (ρτ − 1)

1− Λ
Q

1− 1
νq
J

Λ
Q

+ q ∗mwtp(Q)



Assuming θt = θτ and τ = t = 0, note that 1− Λ
Q

1− 1
νq
J

Λ
Q

+q∗mwtp(Q) =

 q∗mwtp(Q)+
Λ
Q
νq
J

Λ
Q

+q∗mwtp(Q)

. Therefore:

sign(MCPFτ −MCPFt) = sign

(ρτ − ρt) ∗
q ∗mwtp(Q) +

Λ
Q
νq
J

Λ
Q

+ q ∗mwtp(Q)


= sign

q ∗mwtp(Q) +
Λ
Q
νq
J


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Finally, observe:

sign

(
1
p

dJ

dτ
− dJ

dt

)
= sign

(ρτ − ρt) ∗
1− 1

νq
J

Λ
Q

+ q ∗mwtp(Q)


< 0

Proof. Corollary 7.

There are two cases. As a matter of terminology, we say the stability condition ∆ =[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
> 0 does not restrict Λ if and only if

1 + ε∗D−
νq
J

εS
νq
J

+ 1
εms

< 0.

Assume ∆ > 0 does not restrict Λ. Then:

1. If there is overshifting of t (this is the case if 1− 1
εms

> 0), then ρτ > ρt implies Λ0εD
p0q0

> 1

and so J
q
∂q
∂J

= −ωSR
[
1− νq

J

(
1− 1

εms

)
− ΛεD

(1+τ)pq

]
> 0.

2. If there is no overshifting of t (this is the case if 1 − 1
εms

< 0), then εms > 0 but
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms
< 0 implies εms < 0 so we get a contradiction (this means assuming ∆ > 0

does not restrict Λ implies overshifting of t).

3. Assume now that ∆ > 0 does restrict Λ. Then ρτ > ρt implies Λ0εD
p0q0

> 1. Also
νq
J

+ ε∗D−
νq
J

εS
+

νq
J

εms
> 0 implies

0 < ∆ = νq
J

[
2− νq

J
+
ε∗D −

νq
J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1 + τ) + t)q

(
νq
J

+
ε∗D −

νq
J

εS
+

νq
J

εms

)

<
νq
J

[
2− νq

J
+
ε∗D −

νq
J

εS
νq
J

+
νq
J

εms

]
−
(
νq
J

+
ε∗D −

νq
J

εS
+

νq
J

εms

)

Rearranging the expression we obtain 1 − 1
εms

> 0 so that specific taxation is overshifted.

Finally J
q
∂q
∂J

= −ωSR
[
1− νq

J

(
1− 1

εms

)
− ΛεD

(1+τ)pq

]
> 0.
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C Connection to Pass-through Formulas in Delipalla
and Keen (1992)

In this section, we show the connection of our results to Delipalla and Keen (1992). Note

that in Delipalla and Keen (1992), the tax is on firms. The consumer price is defined as P ,

and the producer price is P − t.

In Delipalla and Keen (1992), “A” is defined as:

A ≡ −1
λ

Cxx
PX

where λ ≡ dX
dxi

.

Let usdefine εS = Cx
xCss

. Therefore, we can express “A” as

A =
ε∗D − λ

J
λ
J
εS

Next, Delipalla and Keen (1992) define “E” as:

E ≡ −PXXX
PX

Using the fact that ms = −PXs, we can get 1
εms

= 1− E. Thus,

E = 1− 1
εms

We then substitute for A and E using the expressions above in the pass-through expression

in Delipalla and Keen (1992), and set τ = 0

ρt = dP

dt
=

2 + ε∗D−
λ
J

λ
J
εs

2− λ
J

+ ε∗D−
λ
J

λ
J
εs

+
λ
J

εms

This is the same expression we have for a specific tax when consumers are fully optimizing

OA-19



and there are no pre-existing taxes (see Corollary 1).

Next, consider ad valorem taxes. Delipalla and Keen (1992) show the following:

dP

dτ
= α

dP

dt

where α ≡ P (1+A)+mc
2+A . Thus, substituting in A yields:

α =
P (1 + ε∗D−

λ
J

λ
J
εS

) +mc

2 + ε∗D−
λ
J

λ
J
εS

Therefore,

dP

dτ
=
P (1 + ε∗D−

λ
J

λ
J
εS

) +mc

2 + ε∗D−
λ
J

λ
J
εS

×
2 + ε∗D−

λ
J

λ
J
εs

2− λ
J

+ ε∗D−
λ
J

λ
J
εs

+
λ
J

εms

=
P (1 + ε∗D−

λ
J

λ
J
εS

) +mc

2 + ε∗D−
λ
J

λ
J
εs
− λ

J
(1− 1

εms
)

Therefore, the pass-through of ad valorem taxes is

ρτ = 1
P

dP

dτ

=
2 + ε∗D−

λ
J

λ
J
εS
−

λ
J

εD

2− λ
J

+ ε∗D−
λ
J

λ
J
εs

+
λ
J

εms

which is the expression we have for pass-through in Corollary 4.

D Microfoundations for Demand

In this section, we provide the microfoundation for parallel demands. First, we introduce a

class of continuous choice models that are nested by our utility function.

OA-20



Preferences. Let the representative consumer’s utility function given by

uJ(q1, . . . , qJ ,m) = hJ(q1, . . . , qJ) +m

for any hJ : {1, . . . , J} → R which is symmetric in all its arguments, continuously differen-

tiable, strictly quasi-concave and h(0, . . . , 0) = 0 and where the linear good m is interpreted

as money.

Demand. The consumer’s problem is

max uJ(q1, . . . , qJ ,m) = hJ(q1, . . . , qJ) +m (21)

subject to m+
J∑
j=1

pjqj = y.

When the consumer is facing symmetric prices pj = p for all j, we can transform the prob-

lem as follows. Define HJ(Q) = hJ
(
Q
J
, . . . , Q

J

)
where we interpret Q as aggregate demand.

The new problem then is given by

u∗(p, J, y) = max
Q

HJ(Q) + y − pQ.

From the first-order condition, we obtain the family of inverse demands P (Q, J) = H ′J(Q).

Furthermore, it is easy to see that given the optimal aggregate quantity Q(p, J) for price p,

the strict quasi-concavity of hJ implies the consumer chooses symmetric quantities qj = Q
J

for all j in the original problem.

Furthermore, none of the assumptions on utility are too restrictive. We show that for any

family of downward sloping aggregate demands there exists a utility function uJ : RJ+1 →

R satisfying the conditions above that rationalize the aggregate demands. Let P (Q, J)

be continuously differentiable and strictly decreasing in Q. Let H be any antiderivative∫
P (Q, J)dQ, which exists because P (Q, J) is differentiable. Then, for some ρ ∈ (0, 1), the

following is a strictly quasi-concave direct utility function that rationalizes P (Q, J) for integer
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J when all prices pj in the market are equal:

u(q1, . . . , qJ ,m) = H


Jρ−1

J∑
j=1

qρj

 1
ρ

+m.

Furthermore, we can make sense of J as a continuous variable if we permit a continuum of

varieties q : [0, J ]→ R and let

uJ(q,m) = H

(∫ J

0
Jρ−1qρ(j)dj

) 1
ρ

+m.

We provide two examples in the following to further illustrate the idea of parallel demands

and its applications.

Example 1. Bulow and Pfleiderer (1981) obtain the following three categories of inverse

demands as the unique curves with the property of constant pass-through:

1. P (Q, J) = αJ − βJQδ, for δ > 0,
2. P (Q, J) = αJ − βJ log(Q) ,
3. P (Q, J) = αJ + βJQ

1/η, for η < 0, which is the constant elasticity inverse demand shifted by
the intercept αJ .

An important case is when βJ = β for all J, then the inverse aggregate demands are linearly

separable in J and Q and they shift in parallel as J moves.2 The fact that these are the

only class of curves for which marginal costs are passed-on in a constant fraction makes

them a tractable benchmark and therefore they have been popular in applied work. Fabinger

and Weyl (2016) generalize Bulow and Pfleiderer (1983) and characterize a broader class of

“tractable equilibrium forms” of the form P (Q, J) = αJ +βQt + γQu which allow for greater
2For example, for the first class one possible family of utility functions, among many, that rationalize the

inverse aggregate demands is given by

uJ(q1, . . . , qJ ,m) = αJ

(
Jρ−1

J∑
i=1

qρi

) 1
ρ

− βJ

(∑J
i=1 qi

)δ+1

δ + 1 +m.
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modeling flexibility. Again, as long as β and γ are independent of J , then we say that the

inverse demands shift in parallel.

Example 2. This example shows that our revealed-preference approach allows for rational

preferences that display hate-of-variety (a′(J) < 0). Imagine there is a marginal cost of

consumption cJ for each unit of some good that is consumed; that is, for each unit consumed,

the agent faces a constant cost of evaluating each of J varieties before he chooses. Preferences

are given by

U = H

 J∑
j=1

qj

− cJ J∑
j=1

qj +m

where H is concave. The inverse demands are then P (Q, J) = h(Q) − cJ with h = H ′

decreasing, therefore aggregate demand shifts inward as the variety increases (the intercept

being h(0) − cJ). We can interpret this as the agent displaying a strong degree of thinking

aversion or attention costs. More generally, if the inverse demands are given by P (Q, J) =

a(J)− h(Q) then the sign of a′(J) is unrestricted.

E Formulas in Calibration

Taking logs and rescaling by W
pQ

equation (15) we obtain the following expression which we

use in Section 7 of the paper:

dlog(W )
dlog(1 + τ)

W

pQ
= Λ̃0

dlog(J)
dlog(1 + τ) −

dlog(p)
dlog(1 + τ) + θττ0

dlog(QL)
dlog(1 + τ) (22)

where Λ̃0 ≡ Λ0
pQ

.

We now show the derivation equation (23) in the paper. Note that the Lerner condition
p−mc
p(1+τ) =

νq
J

(1+θτ τ)εD and the long-run free entry condition
dlogp
dτ
dlogq
dτ

= −p−mc
p

we can identify

νq
J

= −εD
1 + θττ

1 + τ

dlogp
dτ
dlogq
dτ

(23)
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We have from Proposition 2, and assuming constant mc, that

dJ

dτ
= − θτJεD

(1 + τ)

1 + 1
εms

+ 1− νq
J

ε∗D

4



and

ρτ =
4− θτ (1+τ)

(1+θτ τ)

(
νq
J

ε∗D
− νq

J
+

νq
J

εms

)
+ ΛεD

(p(1+τ)+t)q

(
θτ (1+τ)
(1+θτ τ)

νq
J

ε∗D

)
4

where 4 ≡ 1 +
[
1 +

ε∗D−
νq
J0

νq
J
εS

] [
1− ΛεD

(1+τ)pq

]
− 1

εms

ΛεD
(1+τ)pq −

νq
J

[
1− 1

εms

]
. Then

4 = − θτJεD
(1 + τ)

1 + 1
εms

+ 1− νq
J

ε∗D
dJ
dτ

 =
− θτ (1+τ)

(1+θτ τ)

(
νq
J

ε∗D
− νq

J
+

νq
J

εms

)
+ ΛεD

(p(1+τ)+t)q

(
θτ (1+τ)
(1+θτ τ)

νq
J

ε∗D

)
ρτ − 1

And so, using ρτ − 1 = (1 + τ)dlog(p)
dτ

, then

ΛεD
pq

(
1

(1 + θττ)

νq
J

ε∗D

)
= −JεD

dlog(p)
dτ

1 + 1
εms

+ 1− νq
J

ε∗D
dJ
dτ

+ 1 + τ

(1 + θττ)

( νq
J

ε∗D
− νq
J

+
νq
J

εms

)

which implies

Λ
pq

= −ε
∗
D

εD
(1 + θττ)

εD
νq
J

dlog(p)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ (1 + τ) ε

∗
D

εD

(
1
ε∗D
− 1 + 1

εms

)

Now, from ε∗D
εD

= 1+θτ τ
1+τ and equation (23) we get
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Λ
pq

= −1 + θττ

1 + τ
(1 + θττ)

− 1+τ
1+θτ τ

dlog(q)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ (1 + τ) 1 + θττ

1 + τ

(
1
ε∗D
− 1 + 1

εms

)

= (1 + θττ)
dlog(q)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ (1 + θττ)

(
1
ε∗D
− 1 + 1

εms

)

= (1 + θττ)
 dlog(q)

dτ
dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ 1
ε∗D

+ 1
εms
− 1


= (1 + θττ)

 1
εms

 dlog(q)
dτ

dlog(J)
dτ

+ 1
+

dlog(q)
dτ

dlog(J)
dτ

(
1 +

1− νq
J0

ε∗D

)
+ 1
ε∗D
− 1


= (1 + θττ)

 1
εms

 dlog(Q)
dτ

dlog(J)
dτ

+
dlog(Q)
dτ
− dlog(J)

dτ
dlog(J)
dτ

(
1 +

1− νq
J

ε∗D

)
+ 1
ε∗D
− 1


= (1 + θττ)

 1
εms

 β̂Q
β̂J

+ β̂Q

β̂J

(
1 +

1− νq
J

ε∗D

)
+

νq
J

ε∗D
− 2


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(1) (2) (3) (4)

Own tax rate differential 0.187 0.165 0.045
  (0.020) (0.018) (0.011)

Other tax rate differential 0.150 0.120
(0.021) (0.018)

Own tax rate differential -0.849 -0.853 -0.876
  (0.258) (0.227) (0.173)

Other tax rate differential -0.132 0.022
(0.257) (0.227)

Own tax rate differential -0.205 -0.215 -0.269
  (0.125) (0.115) (0.100)

Other tax rate differential 0.015 0.054
(0.106) (0.093)

Specification:
Food dummy y y y y
Cell (border pair by year) fixed effects y

N (observations) 8430 8430 8430 8430

Online Appendix Table OA.1:
Effect of Food and Nonfood Sales Taxes [Placebo Test]

Notes: This table reports regressions of prices, quantity and product variety on 
average tax rates for food and nonfood products. For each border pair-by-year cell 
there is two observations: one for food products and one for nonfood products. All 
variables are measured as within-cell differences average difference between the two 
contiguous counties. Own tax rate is the average food tax rate differential for food 
observations and the average nonfood tax rate differential for nonfood observations. 
Other tax rate is the average food tax rate differential for nonfood observations and 
the average nonfood tax rate differential for food observations. Standard errors are 
clustered at the border pair-by-year cell-level. Each regression includes a dummy 
variable for food products. Observations are weighted to reflect the number of 
underlying module-by-store-by-year observations in each cell.

Dependent variable : Prices (Panel A)

Dependent variable : Quantity (Panel B)

Dependent variable : Variety (Panel C)
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Average tax rate, τ 0 0.034 0.034 0.034 0.034 0.034
Tax salience parameter, θτ 0.528 0.475 0.581 0.528 0.528
Demand elasticity, ϵD 1.223 1.345 1.101 1.345 1.101

Pass-through of taxes into pre-tax prices, d log(p )/d log(1+τ ) 0.039 0.039 0.039 0.039 0.039
Quantity response, d log(Q)/d log(1+τ ) -0.731 -0.731 -0.731 -0.731 -0.731
Variety response, d log(J)/d log(1+τ ) -0.243 -0.243 -0.243 -0.243 -0.243

Markup, (p  - c'(q ))/p 0.080 0.080 0.080 0.080 0.080
Implied conduct parameter, vq /J 0.096 0.106 0.087 0.106 0.087
Inverse elasticity of marginal surplus, ϵms -0.936 -1.003 -0.877 -0.936 -0.936
Variety effect parameter, Λ̃0 0.133 0.127 0.191 -0.098 0.416

Full marginal excess burden (MEB) formula, dW̃/dτ -0.085 -0.082 -0.100 -0.028 -0.153
Alternative MEB formula benchmarks:
  Harberger / Chetty-Looney-Kroft benchmark, θτ*τ 0*d log(Q)/d log(1+τ ) -0.013
  Besley(1989)-style benchmark; i.e., full MEB formula with Λ̃0 = 0 -0.052

Panel D: Calibrated welfare formulas

Notes: This table reports structural parameter estimates by finding parameters that allow the model to match the reduced-form 
estimates. The table reports sensitivity to different assumptions on the demand elasticity and the tax salience parameter. 
Columns (2) and (3) vary both parameters but hold the product of the tax salience parameter and demand elasticity constant. The 
last two columns only vary the demand elasticity.

Online Appendix Table OA.2: Sensitivity of parameter estimates to alternative values of demand 
elasticity and tax salience parameter

Panel A: Calibrated parameters

Panel B: Reduced-form estimates

Panel C: Model parameters estimated by matching reduced-form estimates
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Variety effect parameter, Λ̃0

Inverse elasticity of marginal surplus, ϵms

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

(1) (2) (3) (4) (5) (6) (7) (8) (7) (8)

d log(p )/d log(1+τ )   or   d log(p )/dt 0.039 0.058 0.010 0.030 0.006 0.028 0.080 0.069 -0.324 -0.153
Difference between ad valorem and specific tax

MCFP τ   or  MCPFt 0.083 0.067 0.107 0.088 0.017 0.040 1.611 0.880 0.345 0.035
Difference between ad valorem and specific tax

d log(p )/d log(1+τ ) | J   or   d log(p )/dt  | J 0.013 0.061 -0.040 0.003 -0.040 0.003 -0.040 0.003 0.013 0.061
  Difference between SR and LR pass-through 0.026 -0.003 0.050 0.028 0.046 0.026 0.120 0.066 -0.337 -0.214
d log(J)/d log(1+τ )   or   d log(J)/dt -0.243 0.024 -0.628 -0.339 -0.578 -0.312 -1.416 -0.765 -0.234 0.023
∂ log(π)/∂log(1+τ )   or   ∂ log(π)/∂t -0.041 0.004 -0.091 -0.048 -0.091 -0.048 -0.091 -0.048 -0.041 0.004
∂ log(p )/∂log(J) -0.108 -0.106 -0.084 -0.082 -0.083 -0.082 -0.088 -0.087 0.000 0.000
∂ log(q )/∂log(J) -0.728 -0.717 -0.757 -0.745 -0.918 -0.903 0.290 0.285 0.426 0.426
Stability condition (must be >0) 1.812 1.812 1.749 1.749 1.899 1.899 0.080 0.079 -0.348 -0.348

Online Appendix Table OA.3: Additional Counterfactual Comparisons of Ad Valorem and Unit Tax Taxes

No variety effect 
counterfactual,
Λ̃0 = 0.000

Very large variety 
effect 

counterfactual,
Λ0 = 2.000

Panel A: Pass-through of taxes into pre-tax prices

-0.019 -0.022 -0.170-0.020

ϵms  = -0.936 ϵms  = -20.000 ϵms  = -20.000 ϵms  = -20.000

Baseline variety effect estimate, 
Λ̃0 = 0.133

Large variety 
effect 

counterfactual,
Λ̃0 = 1.000
ϵms  = -20.000

0.011

Notes: This table reports counterfactual estimates of reduced-form effects of specific taxes under different assumptions on variety effect and the inverse elasticity of 
marginal surplus, providing alternative scenarios reported in Table 5 using the model parameter estimates of Table 3. The final two columns do not report estimates 
since the large variety effect leads to a violation of stability condition. By contrast, the stability condition is satisfied for all of the columns in Table 5.

0.019

Panel B: Marginal cost of public funds (MCPF)

0.017 -0.022 0.310

Panel C: Additional Statistics

0.731
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Variety effect parameter, Λ̃0

Inverse elasticity of marginal surplus, 𝜖ms

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

(1) (2) (3) (4) (5) (6) (7) (8)

d log(p )/d log(1+τ )   or   d log(p )/dt 0.0390 0.0580 0.0670 0.0849 0.0355 0.0584 0.0701 0.0939
  Difference between ad valorem and specific tax

MCFP τ   or  MCPFt 0.083 0.067 0.061 0.046 0.047 0.070 0.082 0.106
  Difference between ad valorem and specific tax

d log(p )/dτ  | J   or   d log(p )/dt  | J 0.013 0.061 0.084 0.137 0.013 0.061 0.084 0.137
  Difference between SR and LR pass-through 0.026 -0.003 -0.017 -0.052 0.022 -0.002 -0.013 -0.043
d log(J)/d log(1+τ )   or   d log(J)/dt -0.243 0.024 0.133 0.378 -0.244 0.024 0.142 0.418
∂ log(π)/∂log(1+τ )   or   ∂ log(π)/∂t -0.041 0.004 0.024 0.073 -0.041 0.004 0.024 0.073
∂ log(p )/∂log(J) -0.108 -0.106 -0.139 -0.137 -0.092 -0.091 -0.104 -0.102
∂ log(q )/∂log(J) -0.728 -0.717 -0.691 -0.680 -0.907 -0.893 -0.893 -0.879
Stability condition (must be >0) 1.812 1.812 1.877 1.877 1.801 1.801 1.698 1.698

Online Appendix Table OA.4: Love-of-variety and long-run pass-through
Baseline variety effect estimate,

Λ̃0 = 0.133

Panel A: Pass-through of taxes into pre-tax prices

-0.019 -0.018

No variety effect counterfactual,
Λ̃0 = 0.000

Panel C: Additional Statistics

Notes: This table reports counterfactual estimates of redued-form effects of unit taxes under different assumptions on the variety effect and the 
inverse elasticity of marginal surplus, providing alternative scenarios reported in Table 5 using the model parameter estimates of Table 3. 

-0.023 -0.024

ϵms  = -0.468ϵms  = -0.936 ϵms  = -0.936 ϵms  = -0.468

Panel B: Marginal cost of public funds (MCPF)

-0.023 -0.024

0.017 0.015
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Figure OA.1: Year-by-Year OLS Regression Coefficients

Panel A: log Prices
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Panel B: log Quantity
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Panel C: log Product Variety
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Notes: This figures shows yearly estimates of the effects of sales taxes on price (panel A), quantity (panel B) and product
varity (C). All models are based on equation (22) and estimated by OLS. The black vertical bars indicate 95% confidence
intervals. The dashed red horizontal line indicates the average coefficient estimate across all 9 years, and the red area denotes
the 95% confidence interval around that average.
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Figure OA.2: Year-by-Year 2SLS Regression Coefficients

Panel A: log Prices
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Panel B: log Quantity
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Notes: This figures shows yearly estimates of the effects of sales taxes on price (panel A), quantity (panel B) and product
varity (C). All models are based on equation (22) and estimated by 2SLS. The instrument is the average state-level, leave-
county-out average tax rate for each module-year cell. The black vertical bars indicate 95% confidence intervals. The dashed
red horizontal line indicates the average coefficient estimate across all 9 years, and the red area denotes the 95% confidence
interval around that average.
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